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A new approach to particle in cell simulation is presented for
collisionless plasmas. The new method is based on computational
particles of variable size (blobs). Each blob represents an element
of phase space and its shape and size are evolved in time to repre-
sent better the correct evolution. The blob particles can be split to
increase the accuracy in selected regions of stronger gradients.
Blobs can also be coalesced to keep the total number of blobs
constant. The performance of the blob method is analyzed in the
case of the Landau damping and in the formation of a sheath in a
bounded plasma. The results show the correctness and effective-
ness of the new method. When compared to standard PIC methods,
the blob technique reduces the noise for a given number of compu-
tational particles. Q 1996 Academic Press, Inc.

I. INTRODUCTION

Particle in cell (PIC) methods have emerged over the
years as the most effective tool for kinetic plasma simula-
tion. However, some relevant issues still remain open. In
particular, the present paper focuses on two of them.

First, PIC methods present a level of noise due to the
statistical nature of particle methods for the computational
model is composed of far fewer particles than the real
plasma. Noise reduction techniques have been a major
field of research for many years. In some applications, PIC
codes are too noisy to gain conclusive physical results. An
approach to reduce the noise is the df method [1], in which
only the perturbation from the equilibrium distribution is
studied with computational particles. The noise level is
only due to the perturbation and is considerably reduced.
Unfortunately, many physical systems are hard to describe
in terms of a perturbed equilibrium, and the component
of the distribution described with particles is so relevant
that the df method reduces to a conventional PIC without
significant noise reduction.

A second area of major concern is related to systems
where multiple length scales are present. Typical examples

are the collisionless shocks observed in the magnetosphere
or the sheaths at the boundary of laboratory plasmas [2].
In these cases, the plasma presents local, rapid variations
in small portions of the system. A possible approach in
the numerical study of multiple length-scale problems is
the use of nonuniform or adaptive grids, with fine grid
spacing in the regions of strong gradients and larger spacing
where variations are mild. Finite-element and finite-differ-
ence codes adopt nonuniform or adaptive grid packages
in order to obtain the best trade-off between accuracy and
cost [3]. PIC methods are difficult to rezone: the rezoning
of the grid must be accompanied by a similar rezoning of
the particles to gain a real increase in the accuracy. Only
recently, the problem of particle rezoning has been tackled
on a sound mathematical basis [2].

In the present paper, a new particle method is presented,
based on variable-size particles [4]. The method shares
with conventional PICs the idea of repressenting the
plasma with finite-size particles, each representing a large
number of physical particles. However, in the present
method, also the shape and the size of the computational
particles are evolved in time to account for the different
evolution of the physical components of each computa-
tional particle. The new approach presents some significant
improvements. The noise level is reduced. The additional
information carried by each computational particle allows
one to gain low levels of noise with only a few particles
per cell. Moreover, the additional cost involved in handling
the increased amount of information per particle is more
than compensated for by the reduction of noise.

The method presented here can also address effectively
multiple-length scale problems, since the concepts of parti-
cle rezoning presented in Ref. [2] can be used very natu-
rally, leading to a self-rezoning method.

The paper is structured as follows: in Section II the
physical model is presented, the equations of motion of
the computational particles are derived in 1D and their
validity is discussed. In Section III, the interactions be-
tween the particles and the electric field are described and
the interpolation scheme is introduced. In Section IV, the
problem of controlling the size of a particle is studied. In

268
0021-9991/96 $18.00
Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

* Currently Director’s Postdoctoral Fellow Theoretical Division, Mail
Stop B216, Los Alamos National Laboratory Los Alamos, MN 87545.

† Present address: JET—Joint Undertaking, Magnet and Power Supply
Division, Engineering Analysis Group, Abingdon, OX14 3EA, UK.



Section V, a selection of results is presented. The extension
to multidimensional electromagnetic problems is discussed
in Appendix A. The numerical solution of the equations
of motion is described in detail in Appendix B.

II. PHYSICAL MODEL

In the present paper, the attention is focused on a 1D
electrostatic model of an electron plasma with a uniform
background of motionless ions. The electron distribution
function f is governed by the Vlasov equation,

­ f
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1 v
­ f
­x
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m

­ f
­v

5 0, (1)

in which the electric field can be evaluated from the charge
density by means of Poisson’s equation,

­2F

­x2 5 2
r

«o
, E 5 2

­F

­x
. (2)

The net charge density is the sum of the electron charges
and the uniform ion background r0 :

r(x, t) 5 2e E f(x, v, t) dv 1 r0 . (3)

The electron mass is m, the electron charge is 2e.
Many of the following derivations hold for more general

models. In the Appendix A, the extension to multidimen-
sional electromagnetic problems is sketched.

In PIC methods, the real plasma is represented by com-
putational particles, whose number is much smaller than
the real number of electrons in the system. For this reason,
each computational particle is given a finite size and repre-
sents a large number of physical particles with similar prop-
erties. A complete description of PIC methods can be
found in the classical textbooks by Birdsall and Langdon
[5] and by Hockney and Eastwood [6].

The method described in the present paper is based on
the same particle modeling of standard PIC methods, but
each particle is assigned additional descriptors. In fact, a
computational particle represents a set of physical particles
and should have internal degrees of freedom related to
the different motion of its components. The additional
descriptors can be expected to reduce the number of parti-
cles needed to represent a given system. As will be shown,
an effective numerical algorithm can be obtained if the
evolution of size and shape of the particles is followed. It
must be noted that the idea has been presented only re-
cently in PIC methods [4, 7], but it has been finding wide
application in other areas of plasma and fluid simulation.
In the multiple water-bag method for kinetic plasma simu-
lation, the phase space is discretized in a number of zones

of constant density that are evolved in time following the
evolution of their boundaries [8]. Similarly, in simulations
of incompressible fluids, the space is discretized in patches
of constant vorticity. In the blob vortex method [9], the
fluid is represented by ‘‘particles’’ having a given vorticity
but a size changing in time. Moreover, incompressible flows
have been simulated by elliptical patches of constant vortic-
ity [10]. During the simulation, each ellipse changes its
position, aspect ratio, and orientation, preserving the ellip-
tical shape.

In the particle approach, the phase space is covered
with a distribution of Np computational particles, and the
distribution function is represented as

f(x, v, t) 5 ONp

p51
np fp (x, v, t), (4)

where fp is the particle distribution relative to the computa-
tional particle p and np is the number of physical particles
in the computational particle p. In standard PICs, fp is a
given shape function centered around the baricenter of the
particle, usually a Dirac delta d(v 2 vp) in velocity, and a
b-spline bl(x 2 xp) in space,

fp (x, v, t) 5 bl Sx 2 xp

ap
D d(v 2 vp), (5)

where ap is the width of the particle.
In the present paper, the assumption of fixed shape is

relaxed, and a more detailed study of the evolution of
the phase-space distribution function, fp , associated to a
computational particle, is performed. In fact, the formula-
tion of the particle method allows one to include internal
degrees of freedom.

In the following, computational particles of variable size
and shape are called blobs, as the particle shape is not
fixed but changes like a sort of blob and are labelled by b.

Each blob distribution function fb is governed by the
same Vlasov equation valid for the whole system:

­fb

­t
1 v

­fb

­x
2

eE
m

­fb

­v
5 0. (6)

In addition, fb is normalized in such a way that

EE fb(x, v, t) dx dv 5 1. (7)

The electric field in Eq. (6) is still obtained from Poisson’s
equation (2), where the charge r now is given by

r(x, t) 5 O
b

qb E fb(x, v, t) dv 1 r0 , (8)

qb being the charge of each blob.
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The description given by Eqs. (6) and (8) is exact, if the
phase-space distribution at the initial time is given by

f(x, v, t 5 0) 5 ONb

b51
nb fb(x, v, t 5 0), (9)

where Nb is the number of blobs and nb is the number of
physical particles per blob. However, there is no numerical
advantage in solving Eqs. (6) and (8) instead of Eqs. (1)–
(3). To obtain a simplified closed system of equation, it is
necessary to choose a simplified expression for the blob
distribution function fb . The simplest model that general-
izes the PIC assumption, Eq. (5), is to require that the
distribution fb is a function of the most general linear com-
bination of the velocity v and position x,

fb(x, v, t) 5 J S (q1 , q2), (10)

where the shape function S is a given function (to be
specified later) of two variables, q1 and q2 , obtained from
x and v with a linear combination with variable coefficients,

Sq1

q2
D5 Q̂(t) ?Sx 2 xb(t)

v 2 vb(t)
D , (11)

where Q̂(t) is the following 2 3 2 matrix,

Q̂(t) 5Su1(t) u2(t)

u3(t) u4(t)
D , (12)

and J 5 uu1u4 2 u2u3u is the Jacobian of the linear transfor-
mation (11).

In Eq. (10), S must be normalized as

EE S (q1 , q2) dq1 dq2 5 1 (13)

in order to fulfil condition (7).
Equation (11) characterizes the most general linear

transformation with six parameters: the position xb and
velocity vb of the baricenter and four shape parameters,
u1 , u2, u3 , u4 . The choice of the function S, apart from
condition (13), is free, similarly to the choice of the spatial
shape function in standard PICs [6]. Figure 1 shows the
phase-space support of a blob when S (q1 , q2) 5
b0(q1)b0(q2). In this case, a blob is represented as a parallel-
ogram of uniform density in phase-space.

With the assumptions (10)–(11) for fb , a simple closed
system of ordinary differential equations can be derived
if one supposes that the electric field is a linear function
of the spatial coordinate x over the blob support. In fact,
by inserting Eqs. (10)–(11) into Eq. (6), the equations of
motion for the six parameters characterizing a blob can
be readily obtained, as

dxb

dt
5 vb ,

dvb

dt
5 a0 ,

du1

dt
5 2a1u2 ,

du2

dt
5 2u1 ,

du3

dt
5 2a1u4 ,

du4

dt
5 2u3 ,

(14)

FIG. 1. Blob shape in the phase space, according to Eq. (10). A shape function S (q1 , q2) 5 b0(q1)b0(q2) is assumed.



TABLE I

Definition of the First Five Moments of the
Distribution Function fb

Moment Definition

Center of mass position xb 5 kxlb

Center of mass velocity vb 5 kvlb

Space variance sxx,b 5 k(x 2 xb)2lb

Velocity variance svv,b 5 k(v 2 vb)2lb

Covariance svv,b 5 k(x 2 xb)(v 2 vb)lb

where the quantities

a0 5 2
e
m

E(xb , t), a1 5 2
e
m

­E
­x

(15)

have been introduced. A few comments on Eqs. (14)–(15)
are in order. First, J is a constant of motion, as required
by the definition (10) (it can be verified using Eqs. (14)).
Second, Eqs. (14) are exact, in the assumption that E is
linear over the support of the blob. The meaning of the
result is that the most general motion for a system of
particles obeying the Vlasov equation in a linear electric
field is the linear transformation given by Eq. (11). If the
electric field is nonlinear, as will be in general the case,
Eqs. (14) can be regarded as an approximation valid under
the hypothesis that the field E(x) can be approximated
satisfactorily as

E(x) 5 E0,b(xb , Q̂) 1 E1,b(xb , Q̂) (x 2 xb) (16)

over the support of the considered blob.
The values of E0,b and E1,b are obtained by requiring a

best fit of the dependence of the electric field,

EE [E(x) 2 E0,b 2 E1,b(x 2 xb)]2 fb dx dv 5 min, (17)

that yields

E0,b 5 E E(x) Sx(x 2 xb , Q̂) dx, (18)

E1,b 5
e E(x) (x 2 xb) Sx(x 2 xb , Q̂) dx

e (x 2 xb)2 Sx(x 2 xb , Q̂) dx
(19)

in which the blob spatial shape function, Sx , has been in-
troduced:

Sx(x 2 xb , Q̂) 5 E S (u1(x 2 xb)
(20)

1 u2w, u3(x 2 xb) 1 u4w) dw.

A. Simplified Formulation with a Reduced Set of
Shape Parameters

The Eqs. (14)–(15), together with the definitions (18)–
(19) represent a closed system of ordinary differential
equations that can be regarded as an alternative to stan-
dard PIC methods. This formulation has the advantage of
being amenable to extension to electromagnetic multidi-
mensional problems, as described in the Appendix A. In
1D problems, however, a simpler approach can be fol-
lowed. Instead of using the six parameters, xb , vb , u1 , u2 ,
u3 , u4 , introduced above, the motion of a blob is character-
ized by the evolution of xb and vb as above and by fewer
additional parameters characterizing the shape.

The alternative approach followed here makes use of a

moment chain replacing Eq. (6). The chain is truncated
at a given order to obtain a closed system of ordinary
differential equations for the moments considered. This
can be done by assigning a blob shape fb depending on
the moments considered.

To describe the shape of the blobs, the second-order
moments of fb(x, v, t) are used. The evolution of the shape
is characterized by the variance in x:

sxx,b(t) 5 EE fb(x, v, t) (x 2 xb)2 dx dv (21)

that describes the size in x, by the variance in v,

svv,b(t) 5 EE fb(x, v, t) (v 2 vb)2 dx dv (22)

that describes the size in v, and by the x 2 v cross-corre-
lation,

sxv,b(t) 5 EE fb(x, v, t) (x 2 xb) (v 2 vb) dx dv (23)

that describes the slope in phase-space.
The mathematical derivation makes use of the following

definition of the mean value of a function c of x and v
over the support Vb of a blob b:

kclb 5 EE
Vb

c(x, v) fb(x, v) dx dv. (24)

In the following derivations, the support Vb of fb may ex-
tend to the whole phase space, but for computational rea-
sons it is more practical to keep the support ‘‘small’’ in
space and in velocity, as usual in PIC methods.

By multiplying Eq. (6) by c and integrating over x and
v, the equation of motion for the average kclb follows:

dkclb

dt
5 kv­c/­xlb 2

e
m

kE ­c/­vlb . (25)

The moment description of the blob distribution can be
obtained by specializing the definition of c. In the follow-
ing, the attention will focus on the first five moments of fb

listed in Table I. Their equations of motion are readily
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obtained from Eq. (25):

dxb

dt
5 vb

dvb

dt
5 2

e
m

kElb

dsxx,b

dt
5 2sxv,b

dsxv,b

dt
5 svv,b 2

e
m

k(E 2 kElb) (x 2 xb)lb

dsvv,b

dt
5 2

2e
m

k(E 2 kElb) (v 2 vb)lb .

(26)

Equations (26) are as rigorously correct as Eq. (6). How-
ever, as usual in moment procedures, they are not closed.
In particular, the terms in the second, fourth, and fifth of
Eqs. (26) contain the electric field and cannot be evaluated
unless the distribution fb is fully known; i.e., all the infinite
moments of fb should be known. Thus, a closure assump-
tion is needed. The closure of Eqs. (26) requires us to
supplement them with a rule to evaluate the terms con-
taining the electric field, once the first five moments are
given. Therefore, the most general closure assumption is
to require a functional dependence of fb on xb , vb , sxx,b ,
svv,b , and sxv,b only:

fb(x, v, t) 5 S (x, v; hxb(t), vb(t), sxx,b(t), sxv,b(t), sxv,b(t)j).

(27)

The closure assumption, Eq. (27), expresses the blob distri-
bution function in terms of the first- and second-order
moments only and allows one to obtain a closed system
of equations. In principle, any functional dependence on
the first- and second-order moments could be assumed.
This freedom can be used to choose a functional form
which simplifies the final set of equations.

To simplify the charge-gathering phase, the functional
dependence has been chosen by factorizing the velocity
and space dependences as

fb(x, v, t) 5 Sx (x 2 xb , sxx,b)
(28)

Sv Sv 2 vb 2
sxv,b

sxx,b
(x 2 xb), svv,b 2

s 2
xv,b

sxx,b
D .

In such a way, the velocity distribution at each spatial
point has the same shape but shifted to lower or higher
velocities by the term sxv,b (x 2 xb)/sxx,b . The functions
Sx and Sv are normalized to unity. The variance sxx,b deter-
mines the size in x, while svv,b , sxx,b , and sxv,b are needed
to characterize the size and slope in v. This particular

form of the closure assumption results in simpler equations
of motion.

The shape functions Sx and Sv can be expressed conve-
niently in terms of b-spline functions of order l:

Sj(j, s) 5
1
a

bl(j/a), a 5 S 12s

l 1 1D1/2

(29)

(j indicates either x or v). Figure 2 shows the support of
a blob in the phase space for the case of b-splines of order
0 in both x and v.

With the assumption (28), the mean values in Eqs. (26)
containing E can be evaluated as

kElb 5 E0,b (30)

k(E 2 kElb) (x 2 xb)lb 5 sxx,b E1,b (31)

k(E 2 kElb) (v 2 vb)lb 5 sxv,b E1,b , (32)

where E0,b and E1,b are still given by Eqs. (18)–(19).
Thus, the equation of motion for a blob are

dxb

dt
5 vb

dvb

dt
5 2

e
m

E0,b

dsxx,b

dt
5 2sxv,b

dsxv,b

dt
5 svv,b 2

e
m

sxx,b E1,b

dsvv,b

dt
5 22

e
m

sxv,b E1,b .

(33)

FIG. 2. Blob shape in the phase space, according to Eqs. (27), (29).
b-splines of order 0 in both x and v are used.



Equations (33) represent a generalization of the equa-
tions of motion for the center of mass of a particle in
standard PIC methods. Three additional equations govern
shape and size of the particles. However, one of these new
equations can be eliminated, observing that the relation

d
dt

(sxx,b svv,b 2 s 2
xv,b) 5 0 (34)

is rigorously true, under the hypothesis (28). Equation (34)
expresses nothing but the Liouville theorem: the area of
phase space occupied by one blob is constant in time. The
constant of motion Ab 5 sxx,b svv,b 2 s 2

xv,b allows one to
reconstruct any one of the second-order moments from
the remaining two. Thus, the relevant equations of motion
are only four. It is worth noting that the equations of
motion for the second-order moments, Eqs. (33), are com-
patible with the equations for the more general approach,
Eqs. (14). Indeed, it is easy to show that Eqs. (14) imply
Eqs. (33). From the definitions (21)–(23), the second-order
moments of the distribution (10) are

sxx,b 5
u 2

2§22 1 u 2
4§11 2 2u2u4§12

J2

svv,b 5
u 2

1§22 1 u 2
3§11 2 2u1u3§12

J2 (35)

svv,b 5
2u1u2§22 2 u3u4§11 1 (u1u4 1 u2u3)§12

J2 ,

where §ij 5 ee S (q1 , q2)qiqjdq1dq2 is the covariance matrix
associated with S (q1 , q2). Their evolution equations are
obtained by taking the time derivative of Eqs. (35) and
using Eqs. (14). Equations (33) are obtained again, which
proves the compatibility. However, Eqs. (14) provide a
more accurate description of the evolution of a blob, using
six degrees of freedom. Equations (33) are a simpler, com-
patible, but not completely equivalent, set of equations.
In the following, Eqs. (33) will be used because only four
blob properties need to be stored and evolved: xb , vb , sxx,b ,
and sxv,b . The fifth one (svv,b) is derivable from Eq. (34).

III. PARTICLE–FIELD INTERACTION

In the previous section the evolution equations for a
blob in a given field E have been derived. In a plasma, the

self-consistent electric field is a function of the particle
distribution. Therefore, Eqs. (33) must be coupled with
Poisson’s equation to give a complete description of the
system. The coupling between the blob motion and the
electric field is mediated by a computational grid, as in
conventional PIC codes. In this section, the blob-in-cell
approach is described.

The electric field is studied on a spatial grid. In the 1D
model described here, the system is discretized in cells of
centers xg and vertices xg61/2 . Blob charges are gathered
to the grid to obtain the charge qg in each cell g and the
electric field is calculated from the discretized Poisson’s
equation. The same algorithms used in PIC codes can be
applied here [5, 6]. The electric field is then interpolated
to the blobs to get E0,b and E1,b . The novelties of the blob
method over conventional PICs are in the gather step,
where the blobs are assigned to the cells, and in the interpo-
lation step, where the electric field on the grid centers Eg

is used to obtain E0,b and E1,b .
The assignment of the blob charge qb to the cells is based

on the definition of the charge in a cell g as

qg 5 O
b

qb Exg11/2

xg21/2

dx E1y

2y
fb(x, v, t) dv. (36)

According to this equation, the charge in cell g is calculated
as the fraction of the charge of blob b that overlaps cell
g. As usual, the charge gathering phase is best represented
in terms of an assignment function W, defined as [6]

W (xg 2 xb , sxx,b) 5 Exg11/2

xg21/2

Sx(x 2 xb , sxx,b) dx. (37)

In the case of shape functions chosen as b-splines of order
0 (see Eq. (29)), the assignment function W is drawn in Fig.
3. When the grid is uniform with spacing h, the assignment
function W depends only on the relative position of the
blob xb and the cell center xg , on the spatial size of the
blob ab 5 (12sxx,b)1/2 and on the grid spacing h.

The mathematical expression of this function differs ac-
cording to the relative dimensions of the blob and the cell.
In fact, when ab $ h, W can be written as

W (x; ab , h) 55
h
ab

, uxu # (ab 2 h)/2,

h
ab
F1 2

uxu 2 (ab 2 h)/2
h G , (ab 2 h)/2 , uxu # (ab 1 h)/2,

0, uxu . (ab 1 h)/2,

(38)
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while when ab , h, the expression of W is

At any rate, the charge gathering phase for the blob
method is quite similar to conventional PICs. Variations
in size of the computational particles affects the assignment
function. A comparison between the case in Fig. 3 and the
corresponding CIC assignment function for PIC [6] shows
that the use of variable-size particles introduces very little
additional intricacy and computational cost.

W (x; ab , h) 551, uxu # (h 2 ab)/2,

1 2
uxu 2 (h 2 ab)/2

ab
, (h 2 ab)/2 , uxu # (h 1 ab)/2

0, uxu . (h 1 ab)/2.

(39)

The introduction of the assignment function W reduces
the charge gathering step to the formula

qg 5 O
b

qb W (xg 2 xb ; ab , h) (40)

which can be easily implemented in existing PIC codes.
Once qg are known, the electric field at the grid centers

xg can be evaluated. This task can be accomplished in
different ways [6]. For the present derivation, it suffices to
assume that the electric field can be derived from the grid
charges qg as

Eg 5 O
g9

Dgg9qg9 , (41)

where Dgg9 is the Green’s function of the discretized Pois-
son’s equation. The value of the electric field at the grid
points, Eg , can be used to evaluate E0,b and E1,b , defined
in Eqs. (18), (19). Consistency considerations suggest [6]
that the electric field E(x) must be interpolated from Eqs.
(18), (19) by assuming a stepwise dependence of the elec-
tric field

E(x) 5 O
g

b0 Sx 2 xg

h D Eg ; (42)

i.e., the electric field is constant in each cell (equal to the
value in the cell center xg).

With this assumption, Eqs. (18), (19) become

E0,b 5 O
g

Eg Exg1h/2

xg2h/2
Sx (x 2 xb ; sxx,b) dx (43)

E1,b 5 O
g

Eg
1

sxx,b
Exg1h/2

xg2h/2
(x 2 xb) Sx (x 2 xb ; sxx,b) dx. (44)

Equations (43)–(44) can be conveniently expressed in
terms of the already-defined assignment function W and
a second assignment function Wp , defined as

Wp 5
1

sxx,b
Exg1h/2

xg2h/2
(x 2 xb) Sx (x 2 xb ; sxx,b) dx. (45)

FIG. 3. Assignment functions W and Wp , for different blob widths
ab relative to the cell size h.



Assuming a uniform grid and using b-splines of order 0
for Sx , it follows for ab $ h

and for ab , h

where sgn(x) is the sign function. The behavior of the
function Wp is shown in Fig. 3.

The assignment functions W and Wp allow one to formu-
late the electric field interpolation phase as

E0,b 5 O
g(b)

Eg W (xg 2 xb ; ab , h), (48)

E1,b 5 O
g(b)

Eg Wp (xg 2 xb ; ab , h). (49)

The summations in Eqs. (48)–(49) extend only to the grid
cells overlapped by the support of a blob. Moreover, the

Wp (x; ab , h) 5
12
a3

b
3 5

0, uxu # (h 2 ab)/2,

sgn(x)
ab

FSab

2 D2

2 Suxu 2
h
2D2G , (h 2 ab)/2 , uxu # (h 1 ab)/2,

0, uxu . (h 1 ab)/2,

(47)

Wp (x; ab , h) 5
12
a3

b
3 5

hx, uxu # (ab 2 h)/2,

sgn(x)
2 FSab

2 D2

2 Suxu 2
h
2D2G , (ab 2 h)/2 , uxu # (ab 1 h)/2,

0, uxu . (ab 1 h)/2,

(46)

choice of a stepwise electric field, (Eq. (42)), results in the
same assignment function for the charge gathering phase,

(Eq. (36)), and for the average field interpolation, (Eq.
(48)). This circumstance provides a momentum-conserving
scheme [5, 6].

Once more, the differences with respect to standard PICs
are minimal; the only real change is in the assignment
functions. In fact, the additional parameter E1,b is obtained
in a way very similar to that for E0,b . These similarities
allow one to upgrade preexisting PIC codes to the blob
method with only marginal changes.

The above reported equations complete the picture of
the basic elements of the blob method. In Fig. 4 the basic
steps of a time cycle of a blob-in-cell code are summarized
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FIG. 4. Basic steps of the time cycle in a blob-in-cell code.
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From the configuration of the blobs at a given time, the
charge on the grid can be obtained, (Eq. (40)), and the
electric fields can be found on the grid. With Eqs. (48)–
(49), the coefficients E0,b and E1,b can be evaluated. Then,
the equations of motion (33) are used to advance particles
for a time step Dt, and a new configuration of the blob is
obtained from which the computational cycle is followed
again.

The numerical solution of the equations of motion for
a time step Dt can be performed through standard methods.
However, some peculiarities of the equations of motion
of the blob method require additional attention. Most nota-
bly, the numerical schemes must preserve the positivity of
the variances sxx,b and svv,b . In Appendix B, an effective
time discretization technique is presented.

IV. CONTROL OF THE SIZE OF A BLOB

In the blob method, the size of the computational parti-
cles changes dynamically. Therefore, it is important to ad-
dress the issue of the maximum allowed size. For computa-
tional reasons, the size of a blob should not grow too large.
In fact, the cost of the interpolation and gathering phases
is proportional to the number of grid points affected by
each computational particle. However, a more stringent
physical requirement sets the maximum size of a computa-
tional particle. In fact, in the derivation of the equations
of motion, a closure assumption has been applied, limiting
the validity of the results obtained. As discussed in Section
II, the closure assumption, Eq. (27), is equivalent to assum-
ing the linearity of the electric field over the support of a
computational particle. When the nonlinearity is strong,
higher-order moments become necessary for an accurate
description of the time evolution and the closure assump-
tion fails.

Two causes lead to the failure of the hypothesis of a
linear field during the evolution of a blob. First, in multiple
length scale problems, blobs may move from regions of
small field gradients, where the linearity requirement is
satisfied by fairly large particles, to regions of strong gradi-
ents, where the size must be much smaller. Second, the
natural evolution of variable-size particles is towards larger
sizes. As intuition suggests, the portion of a blob with
higher velocity will move faster, leading to a spreading of
the computational particle.

To prove this effect rigorously, the equations governing
the evolution of a single blob in a field-free region can be
solved. From Eq. (33), one obtains

sxx,b(t) 5 sxx,b(0) 1 2sxv,b(0) t 1 svv,b(0) t2. (50)

Equation (50) asserts the natural tendency of a finite size
particle to widen. A few considerations on Eq. (50) are
in order. First, in the presence of electric fields, E1,b can
accelerate or decelerate the increase of the width sxx , de-

pending on its sign. Second, even though one considered
a zero width in velocity svv(0) 5 0, to avoid any widening
(as done in standard PIC methods) the electric field would
distort the computational particle from a straight hori-
zontal line in the phase space and the widening effect would
be reintroduced.

The maximum size of each blob is determined by the
requirement of linearity of the electric field over the sup-
port of a blob. This suggests the criterion

e
Vb

[E(x) 2 E0,b 2 (x 2 xb) E1,b]2 Sx (x 2 xb , sxx,b) dx

e
Vb

E2(x) Sx (x 2 xb , sxx,b) dx
# «,

(51)

where « is a suitable constant. Even if initially the computa-
tional particles satisfy the requirement in Eq. (51), during
the evolution their size may grow too large.

The effect of multiple length-scales and the natural ten-
dency of the computational particles to widen require a
method to control the size. To address this issue, useful
hints can be found in recent studies on the control of the
number of particles in PIC methods [2]. Following the
approach presented in Ref. [2], the size is controlled by
splitting a computational particle when the constraint in
Eq. (51) is no longer satisfied. The parallelogram in phase-
space is split in two equal parts, giving rise to two new
blobs whose properties are given by

x1,2 5 x0 6 S3
4

sxx,0D1/2

,

v1,2 5 v0 6 S3
4

s2
xv,0

sxx,0
D1/2

, (52)

svv1,2
5 svv,0 2

3
4

s2
xv,0

sxx,0
,

sxx1,2
5

1
4

sxx,0 , sxv1,2
5

1
4

sxv,0 , (53)

where the parameters are labeled by 0 for the parent parti-
cle and by 1 and 2 for the daughters. Such a scheme satisfies
the two basic requirements discussed in Ref. [2]. In fact,
the charge assignment to the cells is not changed by the
splitting process and neither does the velocity distribution.
The fulfillment of these two requirements guarantees the
exact preservation of the correct evolution of the system
[2]. Consequently, the blob method can be rezoned very
accurately and in a natural way. The method is very suitable
to multiple length-scale problems where the rezoning is es-
sential.

An unwelcome side effect of the splitting procedure is
the increase in the number of blobs during simulations.
Two approaches can be followed to overcome this effect.



Apparently, the simplest way is to invert the splitting
process by coalescing two small blobs into a bigger one
that still satisfies condition (51). Unfortunately, the coales-
cences are difficult to perform in practice. In general, any
couple of blobs will never be exactly in the configuration
required by Eqs. (52)–(53). Therefore, the coalescence
method has to be applied to blobs that are approximately
in that configuration. However, it is difficult to assess the
error introduced. The same problem arises when splitting
and coalescence are used in conventional PICs [2]. In the
case of the blob method, the problem is complicated fur-
ther by the different sizes and shapes of the blobs.

A second approach can be followed to avoid this diffi-
culty. If the widening of the blob were avoided altogether,
there would be no need for splitting or coalescing the
blobs. If during the computation a blob grows so large that
requirement (51) fails, the blob can be reshaped to satisfy
the condition. The difficulty is that the physics must not
be altered. A possible solution is to add new particles when
a blob is reshaped, in order to alter as little as possible the
phase-space distribution. The idea can be made formal as
follows: the term of the Vlasov equation responsible for
the widening is the stream in space, v­fb/­x. The widening
would be removed if v were replaced by the velocity of
the baricenter of the blob vb . The intermediate situation
in which v is replaced by vb 1 ub(v 2 vb), 0 # ub # 1,
limits the widening without removing it, but introduces an
error. The error can be eliminated by adding a new equa-
tion for the difference d fb between the exact fb and the
one associated with the reshaped blob, f*b . By considering
the set of equations,

­f*b
­t

1 [vb 1 qb(v 2 vb)]
­f*b
­x

2
eE
m

­f*b
­v

5 0 (54)

­(dfb)
­t

1 v
­(dfb)

­x
2

eE
m

­(db)
­v

5 2(1 2 qb) (v 2 vb)
­f*b
­x

, (55)

one can see that f*b 1 dfb satisfies exactly the Vlasov equa-
tion (6). The distributions f*b and dfb can be described with
different levels of accuracy, as dfb generally represents a
small correction to f*b : Eq. (54) is still solved with the blob
method described in Section II, but Eq. (55) can be solved
more coarsely with the PIC method. In fact, by adding
Eqs. (55) over the blob index b, one obtains

­(df)
­t

1 v
­(df)

­x
2

eE
m

­(df)
­v

5 S, (56)

where df 5 ob dfb and the source term

S (x, v, t) 5 2 O
b

(1 2 qb) (v 2 vb)
­f*b
­x

(57)

have been introduced. Equation (56) is similar to the char-
acteristic equation of the df method [1] and can be solved
with a similar technique. It must be pointed out that here
df is due to the reshaping process (in fact, the source term
is proportional to the ‘‘reshaping rate,’’ (1 2 qb)) and not
to a perturbation of the equilibrium, as in the df
method.

If qb 5 1, the blob method, as described by Eqs. (33),
is obtained again; if qb , 1 is used, the equations of motion
for the second-order moments are slightly altered as

dsxx,b

dt
5 2qbsxv,b

dsxv,b

dt
5 qbsvv,b 2

e
m

E1,bsxx,b

dsvv,b

dt
5 22

e
m

E1,bsxv,b ,

(58)

while the equations for the baricenter still hold. As antici-
pated, the effect of qb is to reduce the widening and to
cut it completely when qb 5 0.

Equation (55) has a source term depending on f*b :

Sg 5 2(1 2 qb) (v 2 vb)
­f*b
­x

. (59)

The source Sg has four distinct regions of different signs,
depending on the sign of (v 2 vb) and of ­f*b /­x. Each
region can be associated with the creation of a new particle,
called a seed. Thus, in the reshaping procedure acting in
the computational time interval (tn , tn 1 Dt), four particles
are created, two positive and two negative, as holes in the
phase space. The total mass of the four particles, as well
as their charge, is zero. So, the new particles introduced
in every computational time interval are like small seeds
in phase space that produce a correction to the main term
due to the blobs. During the evolution of a blob, qb 5 1
can be used until condition (51) is about to fail (the blob
is ‘‘ripe’’); then, qb can be lowered to reduce the widening
and the seeds are generated.

This method of controlling the size of the blobs keeps
their number constant and generates seed PIC particles
instead. The seed particles are moved and included in the
field solution as in the usual PIC method. The approach
has two advantages. First, classic PIC particles are easier
to control [2] and their evolution is simpler. Second, seed
particles are positive and negative and, when pairs are
close enough, they can be annihilated, as shown in Fig. 5.

However, the seed method complicates the implementa-
tion of the blob method. For this reason, in the following,
the application of the blob method without seeds is consid-
ered, where only splitting is used to satisfy condition (51).
The number of blobs is not controlled.
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V. RESULTS

The blob method has been implemented in a new code
for electrostatic plasma simulations. As mentioned above,
many components of the computer code are similar if not
identical to existing PIC codes. Nevertheless, the blob
method is based on a new approach and needs to be tested
both in validity and in effectiveness.

The new blob code has been tested in several problems
whose solution was already known. To start with, the blob
approximation is analyzed in an idealized case of particles
moving in an assigned field. Then, self-consistent solutions
are calculated for two-stream instability, Landau damping,
and the formation of a sheath. The results are compared
with reference results obtained by means of the well-known
PIC codes ES1 and PDP1 [5]. In all cases, the blob method
shows its capability to represent correctly and effectively
the physical evolution.

A. Motion in Assigned Fields

In a first series of calculations, the validity of the approxi-
mations behind the blob method is studied. As discussed
above, the blob method introduces new parameters to de-
scribe a computational particle. A single blob has more
degrees of freedom than a conventional particle and it
provides a more accurate description of a region of
phase space.

To show the improvement induced by these extra param-
eters, the evolution of a group of physical particles under
the action of a harmonic field is considered first. More
specifically, particles having the following initial phase
space distribution,

f(x, v, t 5 0) 5 b0 Sx
LD d(v), (60)

are considered. These particles can be modelled either with
a single blob or by using N fixed-shaped superparticles. If
a harmonic field E(x) 5 2E0 ? x is taken, both the blob
and the PIC representation (no matter what the value of
N is) provide the exact evolution of the center of mass
(i.e., x 5 0). Things are different when the spatial RMS
Dx(t) 5 Ïsxx(t) is considered. In fact, one blob gives the
correct answer

Dx(t) 5
L

Ï12
ucos(gt)u (61)

(g being the frequency of the oscillator), while according
to the PIC modelling, one has

dx(t) 5
L

Ï12

1
N

[1 1 (N2 2 1( cos2(gt)]1/2. (62)

As shown in Fig. 6, some classic superparticles are needed
where a single blob is sufficient.

As a second example, the nonlinear Duffing oscillator
is considered. Using dimensionless units, the Hamiltonian
for such an oscillator can be written as

H(x, p) 5
p2

2
1

x4

4
2

x2

2
, (63)

where p is the particle momentum. In this case, shown in
Figs. 7–9, representing a phase-space region with a single
blob gives only an approximate picture of the evolution
of the system, and yet, the values of x and sxx obtained
are very well approximated for a long time. At length, due
to the energy dependence of the oscillator frequency, any
initial phase-space region spreads in space so much that a

FIG. 5. Creation of positive seeds (dots) and negative seeds (circles)
in a warm beam simulated by blobs (full line).

FIG. 6. Behavior of the spatial RMS for a harmonic oscillator, repre-
senting the physical system by means of 1, 2, or 4 classic particles and
by one blob.



single blob is no longer sufficient; in this case, the blob
must be split in two, and the system is correctly described
for another time interval.

B. Two-Stream Instability

The test above proves the accuracy of the blob approach
in rather idealized cases. To investigate the viability of the
blob method, a simulation code has been applied to some
basic Vlasov plasma problems. Units, where the dielectric
constant «0 is 1 and the charge to mass ratio for electrons
is 21, are used.

The two-stream instability is studied first. Two electron

beams are counterstreaming with a speed v0 5 61 in a
cold background of motionless ions. The electron beams
have a thermal velocity vt 5 0.005. The electron plasma
frequency gpe is 1. The system has a width L 5 2f, and
periodic boundary conditions are used. For the blob simu-
lation, 64 computational particles per beam were loaded
initially. The simulation with the blob code is compared
with the reference provided by ES1 (4,096 particles for
each beam). Figure 10 shows the time evolution of the
field energy for the reference case (dotted line) and the
blob case (solid line). The qualitative and quantitative
agreement is evident.
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FIG. 7. Phase-space representation of a group of particles for the
Duffing oscillator at three different times (a. t 5 0; b. t 5 2; c. t 5 23)
and their approximation by means of one blob.

FIG. 8. Behavior of x during the evolution of the particle system
represented in Fig. 7. The exact solution (dotted line) is compared with
the one obtained using one blob (full line).

FIG. 9. Behavior of Dx during the evolution of the particle system
represented in Fig. 7. The exact solution (dotted line) is compared with
the one obtained using one blob (full line).

FIG. 10. Two-stream instability: time evolution of the field energy.
Solution with the blob method (full line), and reference solution (dotted
line). The field energy is normalized to its initial value.
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C. Landau Damping

A significant test to measure the level of noise of a
computational method can be obtained by studying the
Landau damping of an initial perturbation in a Maxwellian
plasma. The decay process can be followed only for a
limited time; eventually the amplitude of the perturbation
becomes comparable with the noise level, and the simula-
tion is no longer accurate. A Maxwellian electron plasma
(thermal velocity vt 5 0.4, gpe 5 1) with a cold ion back-
ground is studied. The system has a width L 5 2f, and
periodic boundary conditions are used.

The PIC simulation uses ES1 with a quiet start. The
blob method uses blobs having initially equal spatial width,
with the velocity and the width in velocity chosen to ap-
proximate a Maxwellian distribution [11]. The perturba-
tion is imposed on the particle positions, as in ES1,

xb 5 xb,0 1 X1 sin S2f
xb,0

L D ,

where xb,0 is the unperturbed position of the blob b and
X1 is the amplitude of the perturbation.

A perturbation X1 5 0.1 is considered first. Figure 11
shows the evolution of field energy obtained with the blob
method using 512 particles. The results are compared with
a reference calculation obtained with ES1 using a large
number of particles (dotted line). Results of calculations
performed with ES1 using 1024 particles are shown in
Fig. 12. The best performance (solid line) is obtained by
introducing a suitable smoothing. Without smoothing (case
a) the results are noisy, and with too much smoothing (case

b) the frequency and damping rate are inaccurate. On the
other hand, the blob method provides automatically a sort
of smoothing that reduces the noise. Note that the smooth-
ing in PIC codes can be regarded as a reshaping that in-
creases the size of the particles. A similar effect is present
in blob method. However, in the blob case, the additional
degrees of freedom of the computational particles reduce
the error in the dispersion relation due to the introduction
of finite-size particles [11].

The low-noise properties of the blob method are con-
firmed when a very small initial perturbation is considered,
X1 5 0.01. Figure 13 shows the results obtained with the
PIC method using 16,000 particles. Again, using smoothing
as prescribed above (solid line) the results are very accurate
when compared with a reference solution (dotted line).
The effect of excessive smoothing or the absence of
smoothing is similar as before. When fewer particles are
used (4096) the noise of the calculation increases (Fig. 14).
Figure 15 shows a blob simulation with 1024 blobs (half
the cost of the case in Fig. 14 and one-eighth the cost of
the case in Fig. 13). The blob method has low levels of
noise and represents correctly the phase and frequency of
the wave. In the present cases, blob splitting is not required.

D. Electrostatic Sheath

As remarked above, the splitting technique allows an
accurate description of multiple length scale problems with
the blob method. In such cases, the size of the blobs is
automatically adapted to the local length scale; i.e., the
width of a blob is fitted to the local variations of the field.

(PagEdit System H) COMPUTATIONAL PHYSICS 3-1932 (Article 5461)

FIG. 11. Landau damping: time evolution of the field energy (normal-
ized to its initial value) with initial perturbation X1 5 0.1. Solution with
the blob method with 512 particles (full line) and reference solution
(dotted line).

FIG. 12. Landau damping: time evolution of the field energy (normal-
ized to its initial value) with initial perturbation X1 5 0.1. Solution with
PIC method using ES1 with 1024 particles and with different smoothing
(as determined by the input parameter a2 of ES1): optimal smoothing
(a2 5 100, full line), no smoothing (line a) and excessive smoothing (a2 5

1000, line b). The reference solution (dotted line) is reported also.



A typical example is the study of sheath formation. An
electron plasma with a uniform and Maxwellian distribu-
tion (gpe 5 1, vt 5 0.1, «0 5 1, charge to mass ratio equal
to 21) is initially loaded in a system of size L 5 1. Open
boundary conditions are used: in usual PIC codes, a particle
is removed when it hits the wall; in the blob approach,
only the part of a blob beyond the boundary is removed,
while the remaining part of the blob is left in the system.

Figure 16 shows a comparison of the electrostatic poten-

tial at gpet 5 6, from a blob simulation (solid line) and
a reference PIC simulation (circles) obtained with PDP1
(using 4000 particles). The potential drop at the wall is
very similar. The blob simulation starts with 80 blobs and
the number rises to 113 during the simulation in order to
satisfy condition (51). The phase-space plot from the blob
simulation at gpet 5 6 (Fig. 17) shows the adaptation of
the blob width to the local length scale. Small blobs are
used near the walls while large blobs can be used in the
interior. This effect is further shown in Fig. 18, where the
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FIG. 13. Landau damping: time evolution of the field energy (normal-
ized to its initial value) with initial perturbation X1 5 0.01. Solution with
the PIC method using ES1 with 16,000 particles and optimal smoothing
(full line); reference solution (dotted line).

FIG. 16. Electrostatic sheath: space behavior of the electrostatic po-
tential obtained with the PIC method using PDP1 (circles) and with the
blob method (solid line) at gpet 5 6.

FIG. 15. Landau damping: time evolution of the field energy (normal-
ized to its initial value) with initial perturbation X1 5 0.01. Solution with
the blob method with 1024 particles and reference solution (dotted line).

FIG. 14. Landau damping: time evolution of the field energy (normal-
ized to its initial value) with initial perturbation X1 5 0.01. Solution with
the PIC method using ES1 with 4096 particles and optimal smoothing
(full line); reference solution (dotted line).
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size sxx,b of the blobs is plotted versus the blob position
xb . The average size of the blobs decreases from the bulk
of the plasma towards the walls. Figure 17 shows also that
blobs that are not lost bounce off the wall and are reflected
towards the bulk.

VI. CONCLUSIONS

A new approach to PIC plasma simulation has been
presented. It is based on computational particles having a
variable shape and size. A 1D electrostatic computer code
has been developed and tested in several problems. The
blob method gives a low noise and accurate description of
the plasma dynamics. The results show that the method
can reduce the level of noise at a given cost. The blob
method can be easily rezoned and is particularly suited for
multiple length-scale problems.

To exploit more fully the possibility of the method, some
generalizations are under way. To start with, in the present
paper the most simple shape function has been assumed.
As with traditional PIC methods, it can be expected that
an optimal choice for the shape can give a better accuracy.
Second, the technique for blob splitting performs satisfac-
torily, but further analysis is needed to control their num-
ber. Some directions have been outlined above. The
method can be extended easily to handle 1D electromag-
netic Vlasov plasmas. The inclusion of Fokker–Planck col-
lision terms is straightforward; blobs widen in response to
the diffusion and friction terms [12].

Finally, the extension to multidimensional problems can
also be undertaken (see Appendix A), even though the
straightforward application of the methods presented here
would lead to a large number of variables for each blob.

FIG. 17. Electrostatic sheath: phase-space plot obtained with the blob method at gpet 5 6.

FIG. 18. Electrostatic sheath: blob width ab versus blob position xb

at gpet 5 6.



Other approaches can be followed, by introducing addi-
tional simplifications on the shape of the blobs in the six-
dimensional phase space.

APPENDIX A: FORMULATION OF THE BLOB
METHOD IN MULTIDIMENSIONAL SYSTEMS

The formal extension to 2D and 3D problems of the
methods described in Section II is straightforward. In the
general case, the assumption (10) is generalized as

fb(x, v, t) 5 Q̂(t) ?Sx 2 xb(t)

v 2 vb(t)
D , (A1)

where

Q̂(t) 5 Sû1 û2

û3 û4
D (A2)

is a 2 3 2 matrix composed by elements that are matrices
themselves (2 3 2 in 2D and 3 3 3 in 3D).

The derivation of the equations of motion for the param-
eters that determine the distribution fb follow the same
steps described above. The acceleration is assumed to be
linear over the support of fb ,

a 5 a0,b 1 â1,b ? (x 2 xb) 1 â2,b ? (v 2 vb), (A3)

where â1,b and â2,b are matrices (2 3 2 in 2D and 3 3 3
in 3D).

Equation (A3) implies a linear electric field and a con-
stant magnetic field over the support of fb . The following
equations of motion for the blobs are obtained by substitut-
ing Eq. (A1) into the Vlasov equation:

dxb

dt
5 vb ,

dvb

dt
5 a0 ,

dû1

dt
5 2û2â1 ,

dû2

dt
5 2û1 2 û2â2 ,

dû3

dt
5 2û4â1 ,

dû4

dt
5 2û3 2 ûâ2 ,

(A4)

which generalize system (14).
The coefficients of the linear expansion (A3) can be

calculated by extending the method used in Section II.
Now the quantities a0,b , â1,b , and â2,b are obtained by min-
imizing the expression

E E F e
m

(E 1 v 3 B) 2 a0,b 2 â1,b ? (x 2 xb)

(A.5)

2 â2,b ? (v 2 vb)G2

fb dx dv 5 min.

The number of parameters and equations is 20 in 2D
and 42 in 3D for each blob. These figures are to be com-
pared with 4 and 8 for the PIC method in 2D and 3D,
respectively. As discussed above, the accuracy of the blob
method may still offset this seemingly overwhelming in-
crease in complexity. Moreover, one can assume simpler
expressions for the shape to replace Eq. (A1). For example,
preferred directions can be assumed, reducing the number
of parameters per blob.

APPENDIX B: NUMERICAL SOLUTION OF THE
EQUATIONS OF MOTION

The equations of motion of a blob, Eqs. (33), are to be
solved numerically. This task can be accomplished by using
one of the many well-known techniques for the solution
of ordinary differential equations. However, sxx and svv

are positive definite quantities and the simplest numerical
schemes, most notably the leap-frog algorithm, may fail to
preserve this properly, leading to severe numerical instabil-
ities. These considerations suggest rewriting the equations
of motion in a more convenient form.

An effective scheme can be derived if the second-order
moments sxx , svv , and sxv are expressed in terms of the
spatial size a, the width in the velocity space b, and the
velocity shear c (see Fig. 2):

sxx,b 5 a2
b/12 (B1)

svv,b 5 (c2
b 1 b2

b)/12 (B2)

sxv,b 5 abcb/12. (B3)

Using Eqs. (B1)–(B3), equations of motion for a, b, and
c can be derived:

dab

dt
5 cb

dbb

dt
5 2

bbcb

ab
(B4)

dcb

dt
5

b2
b

ab
2

e
m

Ep,bab .

As noted above, the Liouville theorem requires the area
of each blob Ab 5 abbb to be a constant of motion; one
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of the equations (for instance, the one for bb) becomes
redundant and can be eliminated.

In summary, the equations of motion of a blob are

dxb

dt
5 vb

dvb

dt
5 2

e
m

Eb

(B5)
dab

dt
5 cb

dcb

dt
5

A 2
b

a3
b

2
e
m

Ep,bab .

The width in the velocity space bb is obtained simply as
Ab/ab .

The formulation above allows a very simple numerical
discretization. The first two equations in Eq. (B5) have the
usual structure of the Newton equations for the baricenter.
The last two equations in Eq. (B5) also have a structure
similar to the Newton equations, where a and c play the
role of conjugate variables. Equations (B5) can now be
solved effectively with the leap-frog algorithm.
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